ar X iv : m at h - ph / 9 80 70 18 v 1 1 7 Ju l 1 99 8 Volume preserving multidimensional integrable systems and Nambu - Poisson Geometry
نویسنده
چکیده
In this paper we study generalized classes of volume preserving multidimensional integrable systems via Nambu-Poisson mechanics. These integrable systems belong to the same class of dispersionless KP type equation. Hence they bear a close resemblance to the self dual Einstein equation. Recently Takasaki-Takebe provided the twistor construction of dispersionless KP and dToda type equations by using the Gindikin's pencil of two forms. In this paper we generalize this twistor construction to our systems.
منابع مشابه
ar X iv : m at h / 99 02 12 8 v 2 [ m at h . D G ] 7 M ar 1 99 9 Remarks on Nambu - Poisson , and Nambu - Jacobi brackets
We show that Nambu-Poisson and Nambu-Jacobi brackets can be defined inductively: an n-bracket, n > 2, is Nambu-Poisson (resp. Nambu-Jacobi) if and only if fixing an argument we get an (n − 1)-Nambu-Poisson (resp. Nambu-Jacobi) bracket. As a by-product we get relatively simple proofs of Darboux-type theorems for these structures.
متن کاملar X iv : m at h / 99 07 16 9 v 1 [ m at h . Q A ] 2 6 Ju l 1 99 9 Integrable deformations of Hamiltonian systems and q - symmetries 1
The complete integrability of the hyperbolic Gaudin Hamiltonian and other related integrable systems is shown to be easily derived by taking into account their sl(2, R) coalgebra symmetry. By using the properties induced by such a coalgebra structure, it can be proven that the introduction of any quantum deformation of the sl(2, R) algebra will provide an integrable deformation for such systems...
متن کاملar X iv : h ep - t h / 95 07 12 5 v 1 2 4 Ju l 1 99 5 Aspects of Classical and Quantum Nambu Mechanics
We present recent developments in the theory of Nambu mechanics, which include new examples of Nambu-Poisson manifolds with linear Nambu brackets and new representations of Nambu-Heisenberg commutation relations. Mathematics Subject Classification (1991) 70H99, 58F07
متن کاملVolume Preserving Multidimensional Integrable Systems and Nambu–Poisson Geometry
In this paper we study generalized classes of volume preserving multidimensional integrable systems via Nambu–Poisson mechanics. These integrable systems belong to the same class of dispersionless KP type equation. Hence they bear a close resemblance to the self dual Einstein equation. All these dispersionless KP and dToda type equations can be studied via twistor geometry, by using the method ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998